METRIC SPACES: RE-EXAM 2016

DOCENT: A. V. KISELEV

Problem 1. Let A and B be bounded subsets of a metric space $(\mathfrak{X}, d_{\mathfrak{X}})$ and $A \cap B \neq \emptyset$. Prove the inequality $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$. (By definition, $\operatorname{diam}(\emptyset) = 0$ and $\operatorname{diam}(S) = \sup_{x,y \in S} d_{\mathfrak{X}}(x,y)$ for a non-empty bounded set $S \subseteq \mathfrak{X}$.)

Problem 2. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\emptyset \neq A \subseteq \mathfrak{X}$ its subset. Prove that the interior $\operatorname{Int}(A) = \{a \in A \mid \exists \varepsilon(a) > 0, \ \mathsf{B}^{\mathrm{dx}}_{\varepsilon}(a) \subseteq A\}$ is open in \mathfrak{X} .

Problem 3. Let \mathcal{X} be a space such that every continuous function $f: \mathcal{X} \to \mathbb{R}$ has the following property: if a < c < b, f(x) = a, and f(y) = b, then there exists $z \in \mathcal{X}$ such that f(z) = c. Prove \mathcal{X} is connected.

(The set \mathbb{R} is equipped with the standard Euclidean topology.)

Problem 4. Suppose for every $n \in \mathbb{N}$ that V_n is a non-empty closed subset of a sequentially compact space \mathfrak{X} and $V_n \supseteq V_{n+1}$. Prove that

$$\bigcap_{n=1}^{+\infty} V_n \neq \varnothing.$$

• Is this intersection always non-empty if the hypothesis of sequential compactness is discarded? (state and prove, e.g., by counterexample)

Problem 5. Prove that the algebraic equation $20 x = 1 - x^{16}$ has a unique solution in the segment $[0,1] \subset \mathbb{R}$.